The Murnaghan-Nakayama rule for k-Schur functions
نویسندگان
چکیده
We prove a Murnaghan–Nakayama rule for k-Schur functions of Lapointe and Morse. That is, we give an explicit formula for the expansion of the product of a power sum symmetric function and a k-Schur function in terms of k-Schur functions. This is proved using the noncommutative k-Schur functions in terms of the nilCoxeter algebra introduced by Lam and the affine analogue of noncommutative symmetric functions of Fomin and Greene. Résumé. Nous prouvons une règle de Murnaghan-Nakayama pour les fonctions de k-Schur de Lapointe et Morse, c’està-dire que nous donnons une formule explicite pour le développement du produit d’une fonction symétrique “somme de puissances” et d’une fonction de k-Schur en termes de fonctions k-Schur. Ceci est prouvé en utilisant les fonctions non commutatives k-Schur en termes d’algèbre nilCoxeter introduite par Lam et l’analogue affine des fonctions symétriques non commutatives de Fomin et Greene.
منابع مشابه
A Murnaghan-Nakayama rule for noncommutative Schur functions
We prove a Murnaghan-Nakayama rule for noncommutative Schur functions introduced by Bessenrodt, Luoto and van Willigenburg. In other words, we give an explicit combinatorial formula for expanding the product of a noncommutative power sum symmetric function and a noncommutative Schur function in terms of noncommutative Schur functions. In direct analogy to the classical Murnaghan-Nakayama rule, ...
متن کاملTwo Murnaghan-nakayama Rules in Schubert Calculus
The Murnaghan-Nakayama rule expresses the product of a Schur function with a Newton power sum in the basis of Schur functions. We establish a version of the Murnaghan-Nakayama rule for Schubert polynomials and a version for the quantum cohomology ring of the Grassmannian. These rules compute all intersections of Schubert cycles with tautological classes coming from the Chern character. Like the...
متن کاملA Short Proof of a Plethystic
The purpose of this note is to give a short proof of a plethystic generalization of the Murnaghan–Nakayama rule, first stated in [1]. The key step in the proof uses a sign-reversing involution on sequences of bead moves on James’ abacus (see [3, page 78]), inspired by the arguments in [4]. The only prerequisites are the Murnaghan–Nakayama rule and basic facts about plethysms of symmetric functi...
متن کاملThe role of residue and quotient tables in the theory of k-Schur functions
Recently, residue and quotient tables were defined by Fishel and the author, and were used to describe strong covers in the lattice of k-bounded partitions. In this paper, we show or conjecture that residue and quotient tables can be used to describe many other results in the theory of k-bounded partitions and k-Schur functions, including k-conjugates, weak horizontal and vertical strips, and t...
متن کاملSkew quantum Murnaghan-Nakayama rule
In this extended abstract, we extend recent results of Assaf and McNamara, the skew Pieri rule and the skew Murnaghan-Nakayama rule, to a more general identity, which gives an elegant expansion of the product of a skew Schur function with a quantum power sum function in terms of skew Schur functions. We give two proofs, one completely bijective in the spirit of Assaf-McNamara’s original proof, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 118 شماره
صفحات -
تاریخ انتشار 2011